PARTIAL CHARACTERIZATION OF AN ISOLATE OF CUCUMBER MOSAIC VIRUS FROM ISMAILIA GOVERNORATE

[21]

Elbeshehy, E. K.F. and Sallamı, A.A.A.

ABSTRACT

Cucumber mosaic virus (CMV) was isolated from naturally infected cucumber plants Cucumis sativus L. grown in various garden and greenhouses of Ismailia Governorate, Egypt exhibiting systemic mosaic, blistering, fruit malformation and stunted plant growth and identified by biological, serological and molecular analysis. The isolated virus gave positive reaction with CMV antiserum but not with antibodies of WMV and SqMV using DAS-ELISA .CMV was able to infect different host plant species including squash, pumpkin, pepper, bean, Chenopodium amaranticolor and cowpea, showing foliar symptoms of mosaic, deformations and necrotic and chlorotic ring spots, that resemble those induced by CMV. SDS-PAGE test showed various distinguishable sole novel protein bands in four cucumber cultivars infected with CMV but not in healthy one . RT-PCR, with the primer CMV1 and CMV2 for CMV-cp. gene, yielded 422 base pair DNA fragments. The following sequences were used in the comparison: Brazil (AF418577), China (FJ403473), New Zealand (AY861395) and India (AJ810260). The partial nucleotide sequence alignment, showed (95%) homology between CMV New Zealand isolate and CMV-Egyptian isolate. The sequence alignment also indicated that the CMV isolate is far from similarity with India CMV, showing (92%) according to the phylogenetic homology tree, which were 92 to 99% identical to those of CMV- Egypt isolate.

Keywords: Cucumis sativus L., Cucumber mosaic virus (CMV), Molecular characterization, Detection and RT-PCR.

Plant pathology, Agricultural Botany Department, Faculty of Agriculture, Suez Canal University

INTRODUCTION

About twenty economically important viruses were detected in cucumber (Cucumis sativus L.) crops (Brunt 1996). et al., Cucumber mosaic virus (CMV) is reported to infect 1287 plant species. CMV was detected in leguminous, ornamental and tomato plants (Zitikaite, 1999)., is one of the most common plant viruses of substantial agricultural importance. infecting more than 1,000 plant species (Van Regenmortel et al., 2000). CMV the type species of the genus Cucumovirus. family Bromoviridae, CMV is a singlestranded positive-sense tripartite genome RNA virus. CMV isolates have been described in several hosts (Maciel-Zambolim et al., 1990, 1994; Dusi et al., 1992; Duarte et al., 1994; Boari et al., 2000; Eiras et al., 2000, 2001; Colariccio et al., 1987, 1996, 2002). CMV are considered to be very important in Africa general and Egypt specially as for their geographical distribution, pathogenic variation and yield loss. The main purpose of this study was isolation and identification of CMV using ELISA, distinguishable sole bands in both healthy and diseased leaves which it could be used for according to it is presence as sign for the virus infection by SDS-

PAGE test and RT-PCR technique. The following sequences were used in the comparison: Brazil (AF418577), China (FJ403473), New Zealand (AY861395) and India (AJ810260) (Takeshita et al., 2001; Colariccio et al., 2002 and Eiras et al., 2002).

MATERIALS & METHODS Serological diagnosis of the virus isolate:

Samples of cucumber plants exhibiting systemic mosaic and stunting, reduced fruit yield and deformation were collected from different fields of Ismailia Governorate. DAS-ELISA technique was used for virus detection as described by Clark and Adams (1977) using the antiserum specific for CMV and compared with those of WMV and SqMV. All viruses tested in triplicate using conventional double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) according to the manufacturer's instructions (Sanofi-Santi animal, France). Optical density measured at λ = 405 nm in an ELISA micro well reader (using Dynatech Immunoassay MR 7000). Samples with an absorbency of at least twice that the healthy controls were considered as a positive for the presence of virus.

Virus samples and natural hosts:

Plant samples which gave positive reaction in the direct ELISA test with CMV were used as a source of the virus . Inoculum was prepared and used to inoculate following indicator Chenopodium amaranticolor Coste & Reyn and Vigna unguiculata L. cv. Borma. To obtain virus isolate in a pure form, the single local lesion technique was followed according to (Kuhn, 1964). Cucumber (Cucumis sativus L.), (Cucurbita Squash pepo L.), Pumpkin (Cucurbita maxima), pepper (Capsicum annuum L.) and Bean (Phaselous vulgaris) known. as a systemic hosts for CMV were inoculated with the virus. Inoculated plants were kept in separate cages, as a source of virus infection.

CMV protein marker: Total soluble protein extraction:

The leaves of four cucumber cultivars (Dina, Razena, Prince and Riea) were collected from infected and healthy plants and ground to flour in a mortar by using liquid nitrogen. Total soluble proteins were extracted in SDS reducing buffer, (store at room temperature) composed of Deionized water (38 ml), 0.5 M Tris -HCl -pH 6.8 (10 ml), Glycerol (8 ml), 10 % (w/v) SDS (16 ml), 2-mercapto-ethanol

(4ml) and 1% (w/v) Bromophenol blue (4ml) until became total volume 80 ml. The sample was diluted at least 1:4 with sample buffer and the extract was centrifuged at 10.000 rpm for 20 minutes. Then 10 μl of total soluble protein was taken for electrophoresis.

Protein analyses:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was carried out in 10% acrylamide slab gels following the system of Laemmli. (1970). Separating gels composed 0.75M Tris - HCl pH8.8, 10% SDS, 0.025% of N.N.N.Ntetramethylenediamine (TEMED) and 30% ammonium persulfate. Stacking gels contained 0.57M Tris-HCl pH6.8, 10% SDS, 0.025% TEMED and 30% ammonium persulfate. Electrode buffer contained 0.025M Tris, 0.192M glycine, 0.1% SDS and pH8.3. Electrophoresis was carried out with a current of 25 mA and 130 volts per gel until the bromophenol blue marker reached the bottom of the gel after 3hrs. After electrophoresis, the silver staining method for protein described by Sammons, et al. (1981) was used. This method of staining is sensitive and detects as little as 2mg of protein in single band. Then the

gels were photographed. Using SDS-PAGE marker for molecular weight 14.000- 29.000-66.000 Cat. Number: WM-SDS-70L 1mg/ml.

Total RNA extraction and RT-PCR:

EZ-10 Spin Column Total TNA Minipreps Super Kit (BIO BASIC INC) was used to extract the from infected total RNA uninfected cucumber leaves according to the kit procedure. A newly designed oligonuclotide specific (5'GCCGTAAGCTGGATGGACA A3').CMV2(5'TATGATAAGAA GCTTGTTTCGCG 3') primers (Wylie et al., 1993), were used for RT-PCR amplification of CMV coat protein gene. cDNA (One step amplified RT-PCR) was described by (AB gene, UK). PCR was carried out in the Biometra T Gradient thermo cycler with one initial denaturation cycle at 94 °C for 2 min, followed by 30 cycles of amplification with temperature profiles of 1 min at 94 °C, 1 min at 50 °C and 2 min at 72 °C. Thirty cycles were followed by one final extension cycle at 72 °C for 7 min.

PCR analysis:

The amplified DNA was electrophoresed on 1% agarose gel with 1xTAE buffer, stained with ethidium bromide and photographed using (Gel Doc 2000)

Bio-RAD). The molecular weight of the PCR products were determined by comparison with DNA markers, 100bp ladder (AB gene, UK),

Sequencing and phylogenetic analysis:

RT-PCR product amplified with CMV1 and CMV2 primer was used as template using the same primer. The reaction was performed in a final volume of 50 µl consisting of 1x PCR buffer (20 mM Tris-HCl pH 8.4, 50 mM KCl, 2.5 mM MgCl2), 200 μM dNTPs, 1 ul of DNA target from CMV PCR product, 10 µM of each primers., 2.5 untis of Taq DNA polymerase (5 Units / µl, AB gene, UK). The conditions for amplification were a denaturation step at 94°C for 2 min followed by 30 cycles of 1min at 94°C,1 min at 50°C and 2 min at 72°C, with a final extension of 10min at 72°C. Reactions were cycled in a thermocycler Biometra T Gradient. **PCR** products GFX^{TM} purified with **PCR** purification kit (Amersham Pharmacia Biotech Inc. USA). The sequence was carried out in Macrogen Inc, gene link DNA Sequencing service, Seoul, Korea.

The nucleotide sequence of the coat protein was compared and analyzed using DNAMAN Sequence Analysis Software (Lynnon BioSoft .Quebec, Canada) comparison with the *CMV* isolates previously characterized and available in the Gene Bank was achieved. The phylogenetic analysis and the homology rate were also carried out.

RESULTS & DISCUSSION

Serological diagnosis of the virus isolate:

The identity of the virus isolate was confirmed by DAS-ELISA technique using kits supplied from SANOFI. Positive reaction was obtained with *CMV* specific antisera (Anonymous, 1998). Virus samples and natural hosts:

Infected cucumber plants with CMV showed viral symptoms of systemic mosaic, blistering, fruit malformation and stunted plant growth. All samples gave positive reaction with CMV and were susceptible to cucumber mosaic viral infection with nearly the same degree of sensitivity. CMV was able to infect different host plant species including Squash (Cucurbita pepo L.), Pumpkin (Cucurbita maxima), Pepper (Capsicum annuum L.), Bean (Phaselous vulgaris), Chenopodium amaranticolor and Cowpea (Vigna unguiculata), showing foliar symptoms of mosaic, deformations and necrotic and chlorotic ring spots after inoculation, that resemble those induced by CMV.

Symptoms started to appear 7-14 days after inoculation. Cucumber plants, showed systemic mosaic after 8 days from inoculation with extracts from the positive reacted samples (Figure 1). This virus was isolated in previous studies from cowpea and other hosts, by several investigators in different countries (Daniels and Campbell, 1992; (Hu et al., 1995; Carrère et al., 1999; Takeshita et al., 2001 and Eiras et al., 2000, 2001, 2002).

CMV protein marker:

Electrophoresed and densitometric analysis of protein bands by SDS-PAGE are illustrated in Figure (2) .The results tabulated in Table (1) distinguishable showed various sole bands in diseased leaves for which it could be used according to it is presence as sign for the CMV infection. Inference brought about in this table hinted to consideration that it would be acceptable if we is assume there a possible correlation between the virus infection and the novel protein bands presence and showed summary for protein bands markers suggested for detection of CMV infection in different cucumber leaves cultivars (Dina, Razena, Prince and Riea) were presented in disease leaves and absented in healthy. These bands named novel protein bands were distinguished in molecular weight between 70 and 25 Kd in infected four cucumber

cultivars. These bands maybe create in infected lanes result effect the virus in plant metabolism and response of plant for CMV infection. Percentage of amount of protein (% Amt.) in Dian and Razena cv. more than % Amt. in Prince and Riea cv. these result illustrated that susceptibility Dian and Razena cv. to CMV infection in excess of Prince and Riea These results are in agreement with those reported by Ahmed, Sayda (2001).Data in this confirmed that the protein markers consistently produced in different Cucumber leaves cultivars might suggesting for the detection of CMV infection. In synopsis, during the investigation regarding percentage determined in each band. Sang &Joo (1992) and Ahmed, Sayda (2001).

Reverse transcriptionpolymerase chain reaction RT-PCR:

The RT-PCR was used for detection of *CMV* coat protein (*cp*) gene in infected cucumber. PCR fragment of correct size 422bp was amplified with the primer CMV1 and CMV2 for CMV-*cp*. gene. Agarose gel electrophoresis

analysis of the amplified PCR products is demonstrated in Figure (3). However, no product was amplified from healthy cumber plants using the same procedure.

Sequence analyses:

DNA amplified product from cucumber plants representing Cucumer mosaic virus CMV show 442bp in Figure (3). PCR product using CMV1 and CMV2 primer was purified with GFXTM purification kit. A multiple alignment was done along with sequences previously obtained which have already been used as reference sequences in other studies and from the Gene bank sequence data. (Eiras et al., 2004; Farreyrol et al., 2004; Devong et al., 2005 and Sun, 2008). The following sequences were used in the comparison: Brazil (AF418577), China (FJ403473), New Zealand (AY861395) and India (AJ810260). partial nucleotide sequence alignment Figure (4) showed (95%) homology between CMV New Zealand isolate and *CMV*-Egyptian The sequence alignment isolate. also indicated that the CMV isolate is far from similarity with India CMV, showing (92%) according to the phylogenetic homology tree Figure (5).

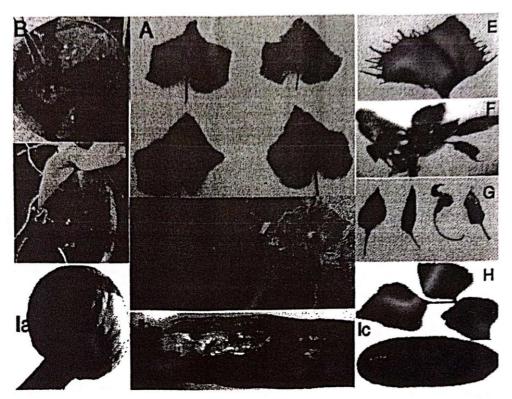


Figure 1. Symptoms caused by CMV showing a wide range of discoloration and fruit malformation. (A) Systemic mosaic on C. sativus, (B) Necrotic ring spot on Ch. amaranticolor, (C) Chlorotic ring spot on V. unguiculata, (D) Mosaic on C. maxima, (E) Chlorotic blotching on C. pepo, (F &G) Mosaic and Leaf deformation on C. annuum, (H) Mosaic and blisters on Ph. vulgaris and (Ia,Ib, Ic) Mosaic and fruit malformation on pumpkin, squash and cucumber fruits respectively.

Table (1). Hypothesized protein markers for the detection of CMV infection in different cucumber leave cultivar.

p.	Bands pre	sent in di	seased and	absent in he	althy	
Cultivars	Bands No.	M.W	% Amt.	Bands No.	M.W	% Amt.
Dina	16	70	16.43	45	25	11.14
Razena	15	71	12.88	46	25	11.2
Prince	14	71	9.75	47	25	9.93
Riea	13	71	9.79	48	25	10.24

M.W = Molecular weight (K.Da), %Amt = Percentage of Amount of protein

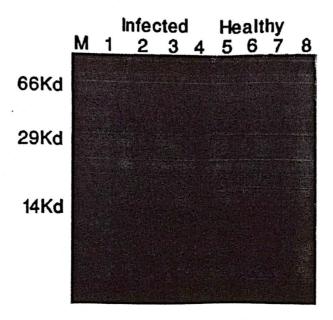


Figure 2. Sodium dodcyle sulphate—polyacrylamide gel electrophoresis (SDS-PAGE) of infected and non infected cucumber leaves cultivars infected with CMV.

Lanes 1,2,3,and 4 (infected leaves):Lane 1 = cv. Dina, Lane 2 = cv. Razena

Lane 3 = cv. Prince, Lane 4 = cv. Riea. Lanes 5,6,7 and 8 (non-infected leaves)

Lane M = SDS-Marker.

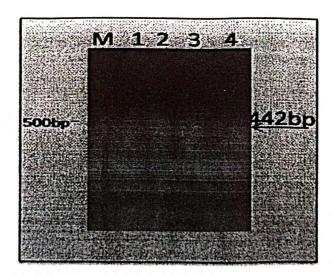


Figure 3. Agarose gel electrophoresis analysis of amplified CMV- cp gene fragment Lanes (1 to 4). RT-PCR products of four CMV samples showing amplified CMV-cp, Gene fragment of the correct size 442bp (arrow) in lanes (3). Lane (1,2 and 4) healthy squash. M: 100bp ladder (AB gene, UK),

CMV-Egypt	TATCCTTTGCCGATTTGATTCTACCGTGTGGGTGACGG	38
CMU-Brazil	PATCCTTTCCCGAAATTTGATTCTACCGTGTGGGTGACAG	40
CMV-China	ANTICOTTTCCCGAAATTTGATTCTACCGTGTGGGTGACAG	40
CMV-India	AATCCTTTGCCGAAATTTGATTCTACtGTGTGGGTGACGG	40
CMV-New Zealand	AATCCTTTGCCGAAATTTGATTCTACCGTGTGGGTGACGG	40
mat Swimt	TCCGTAAAGTTCCTGCCTCCTCGGACCTGTCCGTTTCTGC	78
CMV-Egypt CMV-Brazil	TCCGTAAAGTTCCTGCCTCCTCGGACTTATCCGTTGCCGC	80
CMV-Brazil	TCCGCAAAGTTCCTGCCTCATCGGACTTATCCGTTACcGC	80
CMV-India	TCCGTAAAGTTCCTGCCTCCTCGGACCTGTCCGTTTCcGC	80
CMV-New Zealand	TCCGTAAAGTTCCTGCCTCCTCGGACCTGTCCGTTACCGC	80
	CATCTCTGCTATGTTCGCAGACGGAGCCTCACCGGTACTG	118
CMV-Egypt	CATCTCTGCTATGTTCGCAGACGGAGCCTCACCGGTACTG	120
CMV-Brazil	CATCTCTGCTATGTTTGCGGACGGAGCCTCACCGGTACTG	120
CMV-China CMV-India	CATCTCTGCTATGTTCGCGGACGGAGCCTCACCAGTACTG	120
CMV-Inota	CATCTCTGCTATGTTTTGCGGACGGAGTCTCACCGGTACTG	120
CWA-New pegrand	CATCHOLIAGILLIGOGGIA	
		158
CMV-Egypt	GTTTATCAGTACGCCGCATCCGGAGTCCAAGCTAACAACA	160
CMV-Brazil	GTTTATCAGTAtGCCGCATCtGGAGTCCAAGCCAACAACA	160
CMV-China	GTCTATCAGTACGCCGCATCCGGAGTCCAAGCCAACAACA	160
CMV-India	GTTTATCAGTATGCCGCATCCGGAGTTCAAGCTAACAACA GTTTATCAGTACGCCGCATCCGGAGTTCAAGCTAACAACA	160
CWA-New Seatang	GTTTATCAGTACGCCGCATCCGGAGTTCAAGCTAACAACA	
CMV-Egypt	AACTGTTGCATGATCTTTCGGCGATGCGCGCTGATATTGG	198
CMV-Brazil	AATTGTTGTATGATCTTTCGGCGATGCGCGCTGATATAGG	200
CMV-China	AACTGTTGLATGATCTTTCGGCGATGCGCGCTGATATTGG	200
CMV-India	AATTGTTGLATGATCTTTCGGTGGTGCGCGCTGATATTGG	200
CMV-New Zealand	AATTGTTGTATGATCTTTCTGCGATGCGCTCTGATATTGG	200
CMV-Egypt	CGACATGAGAAAGTACGCCGTACTCGTGTATTCAAAAGAC	238
CMV-Brazil	TGACATGAGAAAGTACGCCGTCCTCGTGTATTCAAAAGAC	240
CMV-China	CGACATGCGAAAGTACGCCGTTCTCGTGTATTCAAAAGAC	240
CMV-India	TGACATGAGAAAGTACGCCGTGCTCGTGTATTCAAAAGAC	240
CMV-New Zealand	CGACATGAGAAAGTACGCCGTACTCGTGTATTCAAAAGAC	240
CMV-Egypt	GATGCACTCGAGACAGATGAACTAGTACTTCATGTCGACA	278
CMV-Brazil	GATGCGCTCGAGACGGACGAGCTAGTGCTTCATGTTGACA	280
CMV-China	GATGCTCTCGAGACGGATGAGTTAGTACTTCATGTCGACA	280
CMV-India	GATGCGCTCGAGACGGATGAGCTAGTACTTCATGTCGACA	280
CMV-New Zealand	GATGCACTCGAGACGGATGAGCTAGTACTTCATGTCGACA	200
CMV-Egypt	TTGAGCACCAACGTATTCCCACATCTGGGGTGCTCCCAGT	318
CMV-Brazil	TCGAGCACCAACGCATTCCCACATCTGGGGTGCTCCCAGT	320
CMV-China	TCGAGCACCAACGCATTCCCACATCTGGGGTGCTCCCAGT	320
CMV-India	TTGAGCACCAACGCATTCCCACATCTGGAGTGCTCCCAGT	320
CMV-New Zealand	TTGAGCACCAACGTATTCCCACATCTGGGGTGCTCCCAGT	320
2 1	TTGAACTCGTGTTTT.CCAGAACCCTCCCTCCGATTTCTG	357
CMV-Egypt	CTGATT-CGTGTTCCCAGATCCTCCCTCCGATTTCTG	358
CMV-Brazil	TTGAACTCGTGTTTTCCCAGAAtCCTCCCTCCGAC.TCTG	359
CMV-China	TTGAACTCGTGTTTT.CCAGAACCCTCCCTCCATTTTCTG	359
CMV-India	TTGAACTCGTGTTTT.CCAGGACCCTCCCTCCGATTTCTG	359
CWA-NEM TESTSIO	110420101111111111111111111111111111111	
CMV-Egypt	TGGCGGGAGCTGAGTTGGCAGTGTTGCTATAAACTGTCTG	397
CMV-Brazil	TGGCGGGAGCTGAGTTGGCAGTtcTGCTATAAACTGTCTG	398
CMV-China	TGGCGGGAGCTGAGTTGGtAGTaTTGCTATAAACTGcCTG	399
CMV-India	aggcgggagctgagttggtagtgttactataaactgcctg	399
CMV-New Zealand	TGGCGGGAGCTGAGTTGGtAGTaTTGCTCTAAACTaTCTG	399
Consensus	GGCGGGAGCTGAGTTGG AGT T CT TAAACT C	TG
CMV-Egypt	AAGTCACTAAACGCTTTGCGGTGAACGGGTTGTCCACCGC	437
CMV-Egypt CMV-Brazil	AAGTCACTAAACGTTTTACGGTGAACGGGTTGTCCATCCA	438
CMV-China	AAGTCACTAAACGCTTTGCGGTGAACGGGTTGTCCATCCA	439
mw-India	AAGTCACTAAACGCTTTGCGGTGAACGGGTTGTCCATCCA	439
CMV-New Zealand	AAGTCACTAAACGCGTTGCGGTGAAACGC	428
		443
CMV-Egypt	CCTTA	442
CMV-Brazil	GCTTA	444
CMV-China	GCTTA	440
CMV-India	G Consensus	

Figure 4. Sequence alignment of Cucumer mosaic virus CMV coat protein gene sequences. Brazil (AF418577), China (FJ403473), New Zealand (AY861395) and India (AJ810260).

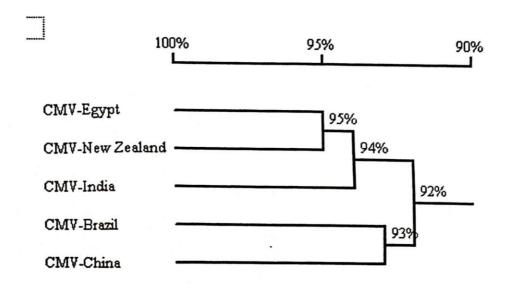


Figure 5. The phylogenetic homology tree based on multiple sequence alignments of the Cucumer mosaic virus CMV coat protein gene with reference to international isolates

REFERENCES

Ahmed, Sayda S. A. (2001).

Future studies on soybean anthracnose disease in Egypt.

Ph. D. Thesis, Fac. Agric.,

Cairo Univ.

Anonymous (1998). Detection and biodiversity of Cucumber mosaic cucumovirus. Conclusions from a ringtest of European Union Cost 823 (New technologies to improve phytodiagnosis). Journal of Plant Pathology 80: 133-149.

Boari, A.J.; Maciel-Zambolim, E.; Carvalho, M.G. and Zerbini, F.M. (2000). Caracterização biológica e molecular de isolados do Cucumber mosaic virus provenientes de oito espécies vegetais. Fitopatologia Brasileira 25: 49-58.

Brunt, A.A.; Crabtree, K.;

Dallwitz, M.J.; Gibbs, A.J.

and Watson, L. (1996).

Viruses of plants Descriptions
and lists from the VIDE
database.Cambridge, 1484 pp.

Carrère, I.; Tepfer, M. and Jacquemond, M. (1999).

Recombinants of cucumber mosaic virus (CMV):

- determinants of host range and symptomatology. Archives of Virology 144: 365-379.
- Clark, M. F. and Adams, A. N. (1977). Characteristics of the microplate method of enzyme-linked immunisorbent assay for the detection of plant viruses. J. Gen. Virol. 34: 475-483.
- Colariccio, A.; Chagas, C.M.; Ferrari, J.T.; Eiras, M. and Chaves, A.L.R. (2002). Molecular Characterization and Phylogenetic analysis of Cucumber mosaic virus in Zingiber officinale in Brazil. In: Proc. XII International Congress of Virology. The World of Microbes, Paris, France, 443-444.
- Colariccio, A.; Chagas, C.M.; Mizuki, M.; Vega, J. and Cereda, E. (1987). Infecção natural do maracujá amarelo pelo vírus do mosaico do pepino no Estado de São Paulo. Fitopatologia Brasileira 12: 254-257.
- Colariccio, A.; Eiras, M.; Vicente, M.; Chagas, C.M. and Harakava, R. (1996). Caracterização parcial de um isolado do vírus do mosaico

- do pepino de Musa sp. "nanicão". Fitopatologia Brasileira 21: 268-274.
- Daniels, J. and Campbell, R.N. (1992). Characterization of Cucumber mosaic virus isolates from California. Plant Disease 76: 1245-1250.
- Deyong, Z.; Willingmann,P.; Heinze,C.; Adam.G.; Pfunder, M.; Frey, B. and Frev. J.E. (2005).Differentiation of Cucumber mosaic virus isolates hybridization to oligonucleotides in microarray format J. Virol. Methods 123 (1), 101-108.
- Duarte, L.M.L.; Rivas, E.B.; Alexandre, M.A.V. and Ferrari, J.T. (1994). Detection of CMV isolates from Commelinaceae species. Fitopatologia Brasileira 19: 248-253.
- Dusi, A.N., Maciel-Zambolim, E., Gama, M.I.C., Giordano, L.B., Santos, J.R.M.and (1992). Ocorrência e caracterização do vírus do mosaico do pepino (CMV) em ervilha. Fitopatologia Brasileira 17: 286-291.
- Eiras M., Araujo J., Colariccio A., Chaves A.L.R.,

- Harakava R., Chagas C.M. (2002). Caracterização molecular de isolados do Cucumber mosaic virus de maracujazeiros no Estado de São Paulo. Summa Phytopathologica 28: 346-349.
- Eiras, M.; Boari, A.J.; Colariccio, A.; Chaves, A.R.; Briones, M.S.; Figueira, A.R. and Harakava, R. (2004) Characterization of isolates of the Cucumber mosaic virus present in Brazil J. Plant Pathol. 86 (1), 59-67.
- Eiras, M.; Colariccio, A. and Chaves, A.L.R. (2001). Isolado do virus do mosaico do pepino obtido de bananeira no Estado de São Paulo pertence ao subgrupo Ia. Fitopatologia Brasileira 26: 53-59.
- Eiras, M.; Colaricci, A.; Chaves, A.L.R.; Araujo, J. and Moreira, S.R. (2000). Partial characterization of Cucumber mosaic virus Commelina sp. isolate from banana crops. Virus: Reviews and Research 5: 192.
- Farreyrol,K.; Pearson, M.N. and Grisoni, M. (2004).

- Phylogeny of Cucumber mosaic virus isolates from Vanilla on the basis of partial RNA3 sequences Unpublished.
- Hu, J.S.; Li, H.P.; Barry,K.; Wang, M. and Jordan, R. (1995). Comparison of dot blot, ELISA and RT-PCR assays for detection of two cucumber mosaic isolates infecting banana in Hawaii. Plant Disease 79: 902-906.
- Kuhn, C.W. (1964). Separation of cowpea virus mixtures. Pytopathology 54:739-740.
- Laemmli, U. K. (1970) .Cleavage of structural proteins during rheassemply of the head of bacteriophage T4. Nature. 227:660-685.
- Maciel-Zambolim, E.; Carvalho, M.G. and Matsuoka, K. (1990). Caracterização parcial do vírus do mosaico do pepino isolado de pimentado-reino. Fitopatologia Brasileira 15: 220-225.
- Maciel-Zambolim, E.; Assis, M.I.T.; Zambolim, L.; Ventura, J.A. and Carvalho, M.G. (1994). Infecção natural da bananeira cultivar "prata" (AAB) pelo vírus do mosaico

- do pepino no Estado de Minas Gerais. Fitopatologia Brasileira 19: 483-484.
- Sammons, D.W.; Adamas, L.D. and Nishizawa, E.F. (1981). Ultra-sensitive silver based staining of polypeptides in polyactylamide gels electrophoresis. 2:135.
- Sang, G. K. and Joo, Y. Y. (1992). Changes in protein patterns resulting from infection of rice leaves with Xanthomonas oryzae pv. orayzae. Molecular Plant Microbe Interactions. 5 (4): 3 56-360.
- Sun, X. (2008). Sequence Analysis of CP gene and Subgroup Identification of CMV from Pepper in Guangdong and Shandong. Unpublished.
- Takeshita, M.; Suzuki, M. and Takanami, Y. (2001). Combination of amino acids in the 3a protein and the coat protein of cucumber mosaic virus determines symptom expression and viral spread in

- bottle gourd. Archives of Virology 146: 697-711.
- Van Regenmortel, M.H.V.; **C.M.**; Fauguet, Bishop, Carstens, D.H.L.; **E.B.**; Estes, M.K.; Lemon, S.M.; Maniloff, J.; Mayo, M.A.; McGeoch, D.J.; Pringle, C.R. and Wickner R.B. Virus **Taxonomy** (2000).Classification and Nomenclature of Viruses. Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press, California, USA.
- Wylie, S.; Wilson, C.R.; Jones, R.A.C. and Jones, M.G.K. (1993). A polymerase chain reaction assay for cucumber mosaic virus in lupin seeds. Australian Journal Agricultural Research 44:41-51.
- Zitikaite, I., and Staniulis, J. (2006). The use RT-PCR for detection of viruses infecting cuember .Agronomy Research 4(Special issue),471-474,2006.